A new three-dimensional luminescence Zn-MOF sensor with the molecular formula [Zn4(μ3-OH)2(ptptc)1.5(DMA)(H2O)2]·2DMA (complex 1) for the selective sensing of 2,4-dinitrophenylhydrazine (2,4-DNPH), picric acid (PA), La3+ and Ca2+ has been synthesized from terphenyl-3,3',5,5'-tetracarboxylic acid (H4ptptc) and zinc nitrate under solvothermal conditions. XRD analysis reveals that complex 1 crystallizes in monoclinic system P21/n space group and consists of a three-dimensional network with one-dimensional channels, which are expected to facilitate the diffusion, concentration and detection processes. Real-time fluorescence quenching responses and good reversibility were observed in the fluorescence titration experiments with nano-molar scale detection limits for 2,4-dinitrophenylhydrazine (2,4-DNPH, 100 nM) and picric acid (PA, 500 nM). Noticeable emission band shift from 365 nm to 420 nm was observed when treated complex 1 with La3+ and a new emission band centered at 475 nm appeared when treated complex 1 with Ca2+ in the metal ions sensing experiments. In virtue of its high selectively, good sensitively and recyclability complex 1 could be a promising fluorescent sensor for explosives and metal ions.
Keywords: Chemosensor; Explosives; Luminescence Zn-MOF; Metal ions.
Copyright © 2019. Published by Elsevier B.V.