Seasonal variation of pollen collected by honey bees (Apis mellifera) in developed areas across four regions in the United States

PLoS One. 2019 Jun 12;14(6):e0217294. doi: 10.1371/journal.pone.0217294. eCollection 2019.

Abstract

For honey bees (Apis mellifera), colony maintenance and growth are highly dependent on worker foragers obtaining sufficient resources from flowering plants year round. Despite the importance of floral diversity for proper bee nutrition, urban development has drastically altered resource availability and diversity for these important pollinators. Therefore, understanding the floral resources foraged by bees in urbanized areas is key to identifying and promoting plants that enhance colony health in those environments. In this study, we identified the pollen foraged by bees in four developed areas of the U.S., and explored whether there were spatial or temporal differences in the types of floral sources of pollen used by honey bees in these landscapes. To do this, pollen was collected every month for up to one year from colonies located in developed (urban and suburban) sites in California, Texas, Florida, and Michigan, except during months of pollen dearth or winter. Homogenized pollen samples were acetolyzed and identified microscopically to the lowest taxonomic level possible. Once identified, each pollen type was classified into a frequency category based on its overall relative abundance. Species richness and diversity indices were also calculated and compared across states and seasons. We identified up to 64 pollen types belonging to 39 plant families in one season (California). Species richness was highest in CA and lowest in TX, and was highest during spring in every state. In particular, "predominant" and "secondary" pollen types belonged to the families Arecaceae, Sapindaceae, Anacardiaceae, Apiaceae, Asteraceae, Brassicaceae, Fabaceae, Fagaceae, Lythraceae, Myrtaceae, Rhamnaceae, Rosaceae, Rutaceae, Saliaceae, and Ulmaceae. This study will help broaden our understanding of honey bee foraging ecology and nutrition in urban environments, and will help promote the use of plants that serve the dual purpose of providing aesthetic value and nutritious forage for honey bee colonies placed in developed landscapes.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Bees / metabolism*
  • California
  • Climate
  • Ecology
  • Florida
  • Flowers / metabolism
  • Michigan
  • Plants / metabolism*
  • Pollen / metabolism*
  • Pollination / physiology
  • Seasons
  • Texas
  • United States

Grants and funding

This study was funded in part by a grant to JR (award number M1402691), JDE (award number 00115707), and ZYH (award number NSNTN015) by Bayer Crop Science and Syngenta Crop Protection LLC (1005822 – UF), JR’s Texas AgriLife Research Hatch Project TEX09557, and a USDA National Institute of Food and Agriculture Multistate Project (2015-67013-23170). We would also like to thank the Herb Dean ’40 Endowed Scholarship and the Texas Beekeepers Association for their financial support to PL. These funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Joseph Sullivan is employed by Ardea Consulting. Ardea Consulting provided support in the form of salary for author JS, but did not have any additional role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript. The specific role of this author is articulated in the ‘author contributions’ section. Daniel R. Schmehl and Ana R. Cabrera are employed by Bayer CropScience LP. Bayer CropScience LP provided support in the form of salaries for authors DRS and ARC, but did not have any additional role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript. The specific roles of these authors are articulated in the ‘author contributions’ section.