Determinants of lifestyle associated with metabolic syndrome in Brazilian adolescents

Nutr Hosp. 2019 Aug 26;36(4):826-833. doi: 10.20960/nh.02459.

Abstract

Background: metabolic syndrome (MetS) has been diagnosed in adolescents. However, it remains uncertain which determinants of lifestyle are independently associated with its occurrence. Objective: to verify the association between lifestyle determinants (physical activity, sedentary behavior and food consumption) and MetS, by controlling demographic indicators and anthropometric nutritional status in a sample of adolescents from the southern region of Brazil. Subjects and methods: a school-based cross-sectional study involving 1,035 adolescents (565 girls and 470 boys) aged 12 to 20 years. Anthropometric measurements were performed and a questionnaire was applied with structured questions. MetS was identified according to criteria proposed by the International Diabetes Federation. The data were treated using bivariate analysis and hierarchical multiple regression. Results: the overall prevalence of MetS was equivalent to 4.5% (95% CI: 3.8 to 5.4). Multivariate analysis showed a significant association between MetS and age (OR = 1.34 [95% CI, 1.09 to 1.80]) and economic class (OR = 1.35 [95% CI: 1.08 to 1.86]). Among the determinants of lifestyle, high recreational screen time (OR = 1.32 [95% CI: 1.07 to 1.94]) and low fruit/vegetable intake (OR = 1.23 [95% CI: 1.01 to 1.87]) were independently associated with MetS. Likewise, obesity (OR = 1.62 [95% CI: 1.28 to 2.47]) was significantly associated with the outcome. Conclusion: in view of the significant association with MetS, intervention strategies should be designed to reduce recreational screen time and encourage fruit/vegetable consumption, especially among older adolescents, with a high economic class and obesity status.

Introducción: el síndrome metabólico (SMet) se ha diagnosticado en adolescentes, sin embargo, sigue siendo incierto qué determinantes del estilo de vida se pueden asociar de forma independiente con su ocurrencia. Objetivo: verificar la asociación entre determinantes del estilo de vida (actividad física, comportamiento sedentario y consumo de alimentos) y SMet mediante el control de indicadores demográficos y el estado nutricional antropométrico en una muestra de adolescentes de la región sur de Brasil. Sujetos y métodos: estudio transversal con 1.035 adolescentes (565 chicas y 470 chicos) de 12 a 20 años. Se midieron valores antropométricos y se aplicó un cuestionario con preguntas estructuradas. El SMet se identificó de acuerdo con los criterios propuestos por la International Diabetes Federation. Los datos fueron tratados mediante análisis bivariado y regresión múltiple jerarquizada. Resultados: la prevalencia general de SMet fue del 4,5% [IC 95%: 3,8-5,4]. El análisis multivariado mostró una asociación significativa entre SMet y edad (OR = 1,34 [IC 95%: 1,09-1,80]) y clase económica (OR = 1,35 [IC 95%: 1,08-1,86]). Entre los determinantes del estilo de vida, el alto tiempo de pantalla en actividad recreativa (OR = 1,32 [IC 95%: 1,07-1,94]) y la baja ingesta de frutas/vegetales (OR = 1,23 [IC 95%: 1,01-1,87]) se asociaron de forma independiente con el SMet. Del mismo modo, la obesidad (OR = 1,62 [IC 95%: 1,28-2,47]) se asoció significativamente con el SMet. Conclusión: en vista de la asociación significativa con el SMet, las estrategias de intervención deben diseñarse para reducir el tiempo de pantalla recreativo y fomentar el consumo de frutas y verduras, especialmente entre los adolescentes mayores, de clase económica más alta y obesos.

Keywords: Enfermedades metabólicas. Actividad física. Estilo de vida sedentario. Hábitos alimenticios. Joven..

MeSH terms

  • Adolescent
  • Adolescent Nutritional Physiological Phenomena
  • Age Distribution
  • Age Factors
  • Brazil / epidemiology
  • Child
  • Cross-Sectional Studies
  • Exercise
  • Feeding Behavior
  • Female
  • Humans
  • Life Style*
  • Male
  • Metabolic Syndrome / epidemiology*
  • Metabolic Syndrome / etiology
  • Nutritional Status
  • Prevalence
  • Regression Analysis
  • Sedentary Behavior
  • Sex Distribution
  • Socioeconomic Factors
  • Young Adult