The structure of the yeast Ctf3 complex

Elife. 2019 Jun 13:8:e48215. doi: 10.7554/eLife.48215.

Abstract

Kinetochores are the chromosomal attachment points for spindle microtubules. They are also signaling hubs that control major cell cycle transitions and coordinate chromosome folding. Most well-studied eukaryotes rely on a conserved set of factors, which are divided among two loosely-defined groups, for these functions. Outer kinetochore proteins contact microtubules or regulate this contact directly. Inner kinetochore proteins designate the kinetochore assembly site by recognizing a specialized nucleosome containing the H3 variant Cse4/CENP-A. We previously determined the structure, resolved by cryo-electron microscopy (cryo-EM), of the yeast Ctf19 complex (Ctf19c, homologous to the vertebrate CCAN), providing a high-resolution view of inner kinetochore architecture (Hinshaw and Harrison, 2019). We now extend these observations by reporting a near-atomic model of the Ctf3 complex, the outermost Ctf19c sub-assembly seen in our original cryo-EM density. The model is sufficiently well-determined by the new data to enable molecular interpretation of Ctf3 recruitment and function.

Keywords: Cryo-EM; Kinetochore; Mitosis; S. cerevisiae; molecular biophysics; structural biology.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Kinetochores / chemistry*
  • Kinetochores / metabolism*
  • Kinetochores / ultrastructure
  • Models, Molecular
  • Multiprotein Complexes / metabolism*
  • Protein Binding
  • Saccharomyces cerevisiae / metabolism*
  • Saccharomyces cerevisiae Proteins / chemistry*
  • Saccharomyces cerevisiae Proteins / metabolism*
  • Saccharomyces cerevisiae Proteins / ultrastructure

Substances

  • Ctf3 protein, S cerevisiae
  • Multiprotein Complexes
  • Saccharomyces cerevisiae Proteins