Comparative genome analysis reveals niche-specific genome expansion in Acinetobacter baumannii strains

PLoS One. 2019 Jun 13;14(6):e0218204. doi: 10.1371/journal.pone.0218204. eCollection 2019.

Abstract

The nosocomial pathogen Acinetobacter baumannii acquired clinical significance due to the rapid development of its multi-drug resistant (MDR) phenotype. A. baumannii strains have the ability to colonize several ecological niches including soil, water, and animals, including humans. They also survive under extremely harsh environmental conditions thriving on rare and recalcitrant carbon compounds. However, the molecular basis behind such extreme adaptability of A. baumannii is unknown. We have therefore determined the complete genome sequence of A. baumannii DS002, which was isolated from agricultural soils, and compared it with 78 complete genome sequences of A. baumannii strains having complete information on the source of their isolation. Interestingly, the genome of A. baumannii DS002 showed high similarity to the genome of A. baumannii SDF isolated from the body louse. The environmental and clinical strains, which do not share a monophyletic origin, showed the existence of a strain-specific unique gene pool that supports niche-specific survival. The strains isolated from infected samples contained a genetic repertoire with a unique gene pool coding for iron acquisition machinery, particularly those required for the biosynthesis of acinetobactin. Interestingly, these strains also contained genes required for biofilm formation. However, such gene sets were either partially or completely missing in the environmental isolates, which instead harbored genes required for alternate carbon catabolism and a TonB-dependent transport system involved in the acquisition of iron via siderophores or xenosiderophores.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Acinetobacter baumannii / genetics*
  • Acinetobacter baumannii / isolation & purification
  • Comparative Genomic Hybridization / methods*
  • Genes, Bacterial / genetics
  • Genome / genetics
  • Genomics / methods
  • Genotype
  • Phenotype
  • Soil Microbiology
  • Virulence / genetics

Grants and funding

HY is the recipient of women scientist grant from Department of Science and Technology (DST)(SR/WOS-A/LS-1225/2015(G)), New Delhi (http://www.dst.gov.in/scientific-programmes/scientific-engineering-research/women-scientists-programs). CSIR, New Delhi and DST, New Delhi supported research work in DS* laboratory. Dept. of Animal Biology received special assistance from DST, New Delhi under FIST-level-II. School of Life Sciences received financial assistance under DBT-CREBB programme (Department of Biotechnology)(http://www.dbtindia.nic.in/). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.