β-Glucosidase is the rate-limiting component of a cellulase-hydrolyzing reaction. Thermostability and glucose-tolerance are two critical criteria of the enzyme, which practically determine its performance in industrial applications. In this study, a thermostable and glucose-tolerant β-glucosidase (named Bgl1317) belonging to the glycoside hydrolase family 1 was acquired from a metagenomic library of Turpan soil through functional screening. Bgl1317 showed excellent thermostability and glucose-tolerance and its crystal structure was subsequently determined at a high resolution. Rational design based on the structure was conducted, producing three beneficial mutations A397R, L188A and A262S. While A397R improved the cellobiose activity by 80%, L188A and A262S increased the IC50 value of glucose from 0.8 to 1.5 M. The residues that may play a role in glucose-tolerance of GH1 β-glucosidases were summarized and the performances of glucose-tolerant β-glucosidases reported in recent years were discussed and compared. This study provides insights into enzymatic properties of Bgl1317 for engineering it into a powerful catalyst and β-glucosidases in general.
Keywords: Crystal structure; Glucose-tolerance; Rational design; Thermostability; β-Glucosidase.
Copyright © 2019. Published by Elsevier B.V.