Background: Venetoclax is a selective B-cell lymphoma-2 (BCL-2) inhibitor approved for use as monotherapy or with rituximab in patients with chronic lymphocytic leukemia (CLL). The objectives of the current analysis of observed data from adult patients randomized to venetoclax-rituximab in the phase III MURANO study were to characterize venetoclax pharmacokinetics (PKs) using a Bayesian approach, evaluate whether a previously developed population PK model for venetoclax can describe the PKs of venetoclax when administered with rituximab, and to determine post hoc estimates of PK parameters for the exposure-response analysis.
Methods: Parameter estimates and uncertainty estimated by a population PK model were used as priors. Additional covariate effects (CLL risk status, geographic region, and 17p deletion [del(17p)] status) were added to the model. The updated model was used to describe venetoclax PKs after repeated dosing in combination with rituximab, and to determine post hoc estimates of PK parameters for exposure-response analysis.
Results: The PK analysis included 600 quantifiable venetoclax PK samples from 182 patients in the MURANO study. Model evaluation using standard diagnostic plots, visual predictive checks, and normalized prediction distribution error plots indicated no model deficiencies. There was no significant relationship between venetoclax apparent clearance (CL/F) and bodyweight, age, sex, mild and moderate hepatic and renal impairment, or coadministration of weak cytochrome P450 3A inhibitors. The chromosomal abnormality del(17p) and CLL risk status had no apparent effect on the PKs of venetoclax. A minimal increase in venetoclax CL/F (approximately 7%) was observed after coadministration with rituximab. CL/F was 30% lower in patients from Central and Eastern Europe (n = 60) or Asia (n = 4) compared with other regions (95% confidence interval [CI] 21-39%). Apparent central volume of distribution was 30% lower (95% CI 22-38%) in females (n = 56) compared with males (n = 126). No clinically significant impact of region or sex was observed on key safety and efficacy outcomes.
Conclusions: The Bayesian model successfully characterized venetoclax PKs over time and confirmed key covariates affecting PKs in the MURANO study. The model was deemed appropriate for further use in simulations and for generating individual patient PK parameters for subsequent exposure-response evaluation.