Mesoscale self-assembly of particles into supercrystals is important for the design of functional materials such as photonic and plasmonic crystals. However, while much progress has been made in self-assembling supercrystals adopting diverse lattices and using different types of particles, controlling their growth orientation on surfaces has received limited success. Most of the latter orientation control has been achieved via templating methods in which lithographic processes are used to form a patterned surface that acts as a template for particle assembly. Herein, a template-free method to self-assemble (111)-, (100)-, and (110)-oriented face-centered cubic supercrystals of the metal-organic framework ZIF-8 particles by adjusting the amount of surfactant (cetyltrimethylammonium bromide) used is described. It is shown that these supercrystals behave as photonic crystals whose properties depend on their growth orientation. This control on the orientation of the supercrystals dictates the orientation of the composing porous particles that might ultimately facilitate pore orientation on surfaces for designing membranes and sensors.
Keywords: crystal orientation; mesoscale assembly; metal-organic frameworks; photonic crystals; supercrystals.
© 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.