The era of modern oncology incorporates an ever-evolving personalized approach to hematological malignancies and solid tumors. As a result, patient survival rates have, in part, substantially improved, depending on the specific type of underlying malignancy. However, systemic therapies may come along with potential cardiotoxic effects resulting in heart failure with increased morbidity and mortality. Ultimately, patients may survive their malignancy but die as a result of cancer treatment. Cardiovascular magnetic resonance imaging has long been in use for the assessment of function and tissue characteristics in patients with various nonischemic cardiac diseases. Besides an introductory overview on the general definition of cardiotoxicity including potential underlying mechanisms, this review provides insight into the application of various cardiovascular magnetic resonance imaging techniques in the setting of cancer therapy-related cardiac and vascular toxicity. Early identification of cardiotoxic effects may allow for on-time therapy adjustment and/or cardioprotective measures to avoid subsequent long-term heart failure with increased mortality.