Tuning properties of biomimetic magnetic nanoparticles by combining magnetosome associated proteins

Sci Rep. 2019 Jun 19;9(1):8804. doi: 10.1038/s41598-019-45219-7.

Abstract

The role of magnetosome associated proteins on the in vitro synthesis of magnetite nanoparticles has gained interest, both to obtain a better understanding of the magnetosome biomineralization process and to be able to produce novel magnetosome-like biomimetic nanoparticles. Up to now, only one recombinant protein has been used at the time to in vitro form biomimetic magnetite precipitates, being that a scenario far enough from what probably occurs in the magnetosome. In the present study, both Mms6 and MamC from Magnetococcus marinus MC-1 have been used to in vitro form biomimetic magnetites. Our results show that MamC and Mms6 have different, but complementary, effects on in vitro magnetite nucleation and growth. MamC seems to control the kinetics of magnetite nucleation while Mms6 seems to preferably control the kinetics for crystal growth. Our results from the present study also indicate that it is possible to combine both proteins to tune the properties of the resulting biomimetic magnetites. In particular, by changing the relative ratio of these proteins, better faceted and/or larger magnetite crystals with, consequently, different magnetic moment per particle could be obtained. This study provides with tools to obtain new biomimetic nanoparticles with a potential utility for biotechnological applications.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Alphaproteobacteria / metabolism
  • Amino Acid Sequence
  • Bacterial Proteins / chemistry
  • Bacterial Proteins / metabolism*
  • Biomimetic Materials / chemistry*
  • Computer Simulation
  • Magnetite Nanoparticles / chemistry*
  • Magnetite Nanoparticles / ultrastructure
  • Magnetosomes / chemistry*
  • Magnetosomes / ultrastructure

Substances

  • Bacterial Proteins
  • Magnetite Nanoparticles

Supplementary concepts

  • Magnetococcus marinus