The phenotypic diversity of cortical GABAergic neurons is probably necessary for their functional versatility in shaping the spatiotemporal dynamics of neural circuit operations underlying cognition. Deciphering the logic of this diversity requires comprehensive analysis of multi-modal cell features and a framework of neuronal identity that reflects biological mechanisms and principles. Recent high-throughput single-cell analyses have generated unprecedented data sets characterizing the transcriptomes, morphology and electrophysiology of interneurons. We posit that cardinal interneuron types can be defined by their synaptic communication properties, which are encoded in key transcriptional signatures. This conceptual framework integrates multi-modal cell features, captures neuronal input-output properties fundamental to circuit operation and may advance understanding of the appropriate granularity of neuron types, towards a biologically grounded and operationally useful interneuron taxonomy.