Aims: Retinopathy is a neurodegenerative complication associating diabetes mellitus. Diabetic retinopathy (DR) is the primary reason of visual loss during early adulthood. DR has a complicated multifactorial pathophysiology initiated by hyperglycaemia-induced ischaemic neurodegenerative retinal changes, followed by vision-threatening consequences. The main therapeutic modalities for DR involve invasive delivery of intravitreal antiangiogenic agents as well as surgical interventions. The current work aimed to explore the potential anti-inflammatory and retinal neuroprotective effects of levetiracetam.
Main methods: This study was performed on alloxan-induced diabetes in mice (n: 21). After 10 weeks, a group of diabetic animals (n: 7) was treated with levetiracetam (25 mg/kg) for six weeks. Retinal tissues were dissected and paraffin-fixed for examination using (1) morphometric analysis with haematoxylin and eosin (HE), (2) immunohistochemistry (GLUT1, GFAP and GAP43), and (3) RT-PCR-detected expression of retinal inflammatory and apoptotic mediators (TNF-α, IL6, iNOS, NF-κB and Tp53).
Key findings: Diabetic mice developed disorganized and debilitated retinal layers with upregulation of the gliosis marker GFAP and downregulation of the neuronal plasticity marker GAP43. Additionally, diabetic retinae showed increased transcription of NF-κB, TNF-α, IL6, iNOS and Tp53. Levetiracetam-treated mice showed downregulation of retinal GLUT1 with relief and regression of retinal inflammation and improved retinal structural organization.
Significance: Levetiracetam may represent a potential neuroprotective agent in DR. The data presented herein supported an anti-inflammatory role of levetiracetam. However, further clinical studies may be warranted to confirm the effectiveness and safety of levetiracetam in DR patients.
Keywords: Diabetic retinopathy; GFAP; GLUT1; Growth-associated protein 43; Inflammation; Levetiracetam.
Copyright © 2019 Elsevier Inc. All rights reserved.