The crystal network development, elastic properties scaling behavior, and mechanical reversibility of candelilla wax (CW) oleogels with and without emulsifiers were studied. Saturated monoglycerides (MG) and polyglycerol polyricinoleate (PGPR) were added at 1 or 2 times the critical micelle concentration. Although the micelles of both emulsifiers act as nucleation sites for the mixture of aliphatic acids and alcohols of CW, they did not affect the oleogel's thermodynamic stability. It was established that the crystal network of CW consists of at least two types of crystals, one rich in n-hentriacontane and other rich in aliphatic acids. Both crystals species contributed significantly to the oleogel elasticity. The elastic properties scaling behavior of CW oleogels fitted the fractal model within the weak-link regime. The setting temperature and added emulsifier modified the crystal network fractal dimension. During shearing, oleogels had massive breaking of junction zones, causing the loss of fractality in the crystal network, which in turn decreased the system's elasticity.
Keywords: Candelilla wax; Elastic modulus; Fractal dimension; Mechanical reversibility; Monoglycerides; Oleogel; PGPR; Rheology.
Copyright © 2019 Elsevier Ltd. All rights reserved.