Arsenic acts as a human carcinogen and contributes to skin cancer via mechanisms that remain largely unknown. Recent evidence implicates the perturbation of Wnt, Shh and BMP signals as a potential mechanism. We initiated studies to examine gene expression changes in these signaling pathways. Meanwhile, the antagonistic effect of retinoic acid was explored. In this study, HaCaT and NHEK cells were treated with arsenic trioxide (As2O3) alone or in combination with arotinoid trometamol (retinoic acid receptor agonist). Flow cytometric analysis, PCR array and Western blot were used to determine the potential mechanism and signaling pathways associated with arsenic carcinogenesis. The results showed that low concentration As2O3 could stimulate keratinocyte proliferation, and arotinoid trometamol inhibited the process via regulating the expression of about 20 genes. These genes included components of Wnt signaling (CSNK1A1L, CTNNB1, SFRP1, Wnt10B, Wnt11, Wnt16, Wnt5A, Wnt8A), Shh signaling (C6orf138, HHIP, PTCHD1) and BMP signaling pathway (BMP2, BMP7). The changes of some differentially expressed genes of these signaling pathways in As2O3 treatment group were counteracted by the subsequent arotinoid trometamol treatment. Our data suggest that dysregulation and cross-talk of Wnt, Shh and BMP signals play great roles in the process of arsenic-induced carcinogenesis, which could be antagonized by arotinoid trometamol.
Keywords: BMP; PCR array; Shh; Wnt; arotinoid trometamol; arsenic trioxide; keratinocyte.
Copyright 2019 Biolife Sas www.biolifesas.org.