Nogo-A targeted therapy promotes vascular repair and functional recovery following stroke

Proc Natl Acad Sci U S A. 2019 Jul 9;116(28):14270-14279. doi: 10.1073/pnas.1905309116. Epub 2019 Jun 24.

Abstract

Stroke is a major cause of serious disability due to the brain's limited capacity to regenerate damaged tissue and neuronal circuits. After ischemic injury, a multiphasic degenerative and inflammatory response is coupled with severely restricted vascular and neuronal repair, resulting in permanent functional deficits. Although clinical evidence indicates that revascularization of the ischemic brain regions is crucial for functional recovery, no therapeutics that promote angiogenesis after cerebral stroke are currently available. Besides vascular growth factors, guidance molecules have been identified to regulate aspects of angiogenesis in the central nervous system (CNS) and may provide targets for therapeutic angiogenesis. In this study, we demonstrate that genetic deletion of the neurite outgrowth inhibitor Nogo-A or one of its corresponding receptors, S1PR2, improves vascular sprouting and repair and reduces neurological deficits after cerebral ischemia in mice. These findings were reproduced in a therapeutic approach using intrathecal anti-Nogo-A antibodies; such a therapy is currently in clinical testing for spinal cord injury. These results provide a basis for a therapeutic blockage of inhibitory guidance molecules to improve vascular and neural repair after ischemic CNS injuries.

Keywords: CNS; guidance factor; ischemia; revascularization; therapeutic angiogenesis.

MeSH terms

  • Animals
  • Antibodies, Anti-Idiotypic / pharmacology*
  • Brain / drug effects
  • Brain / pathology
  • Brain Ischemia / drug therapy*
  • Brain Ischemia / genetics
  • Brain Ischemia / immunology
  • Brain Ischemia / pathology
  • Central Nervous System / drug effects
  • Central Nervous System / pathology
  • Disease Models, Animal
  • Humans
  • Mice
  • Neovascularization, Physiologic / genetics
  • Neovascularization, Physiologic / immunology
  • Neurons / drug effects
  • Neurons / pathology
  • Nogo Proteins / antagonists & inhibitors
  • Nogo Proteins / genetics*
  • Nogo Proteins / immunology
  • Pyramidal Tracts / drug effects
  • Pyramidal Tracts / pathology
  • Recovery of Function / genetics
  • Sphingosine-1-Phosphate Receptors / antagonists & inhibitors
  • Sphingosine-1-Phosphate Receptors / genetics*
  • Sphingosine-1-Phosphate Receptors / immunology
  • Spinal Cord Injuries / drug therapy
  • Spinal Cord Injuries / immunology
  • Spinal Cord Injuries / pathology
  • Stroke / drug therapy*
  • Stroke / genetics
  • Stroke / immunology
  • Stroke / pathology

Substances

  • Antibodies, Anti-Idiotypic
  • Nogo Proteins
  • Sphingosine-1-Phosphate Receptors
  • sphingosine-1-phosphate receptor-2, mouse