Supportive touch has remarkable benefits in childbirth and during painful medical procedures. But does social touch influence pain neurophysiology, ie, the brain processes linked to nociception and primary pain experience? What other brain processes beyond primary pain systems mediate their analgesic effects? In this study, women (N = 30) experienced thermal pain while holding their romantic partner's hand or an inert device. Social touch reduced pain and attenuated functional magnetic resonance imaging activity in the Neurologic Pain Signature (NPS)-a multivariate brain pattern sensitive and specific to somatic pain-and increased connectivity between the NPS and both somatosensory and "default mode" regions. Brain correlates of touch-induced analgesia included reduced pain-related activation in (1) regions targeted by primary nociceptive afferents (eg, posterior insula, and anterior cingulate cortex); and (b) regions associated with affective value (orbitofrontal cortex), meaning (ventromedial prefrontal cortex [PFC]), and attentional regulation (dorsolateral PFC). Activation reductions during handholding (vs holding a rubber device) significantly mediated reductions in pain intensity and unpleasantness; greater pain reductions during handholding correlated with greater increases in emotional comfort, which correlated with higher perceived relationship quality and (a trend toward) greater perceived closeness with the romantic partner. The strongest mediators of analgesia were activity reductions in a brain circuit traditionally associated with stress and defensive behavior in mammals, including ventromedial and dorsomedial PFC, rostral anterior cingulate cortex, amygdala/hippocampus, hypothalamus, and periaqueductal gray matter. Social touch affects core brain processes that contribute to pain and pain-related affective distress in females, and should be considered alongside other treatments in medical and caregiving contexts.