Species rear range edges are predicted to retract as climate warms, yet evidence of population persistence is accumulating. Accounting for this disparity is essential to enable prediction and planning for species' range retractions. At the Mediterranean edge of European beech-dominated temperate forest, we tested the hypothesis that individual performance should decline at the limit of the species' ecological tolerance in response to increased drought. We sampled 40 populations in a crossed factor design of geographical and ecological marginality and assessed tree growth resilience and decline in response to recent drought. Drought impacts occurred across the rear edge, but tree growth stability was unexpectedly high in geographically isolated marginal habitat and lower than anticipated in the species' continuous range and better-quality habitat. Our findings demonstrate that, at the rear edge, range shifts will be highly uneven and characterised by reduction in population density with local population retention rather than abrupt range retractions.
Keywords: Biogeography; climate change; growth decline; periphery; range retraction; relict; resilience.
© 2019 John Wiley & Sons Ltd/CNRS.