Background: The electrocardiographically quantified QRS duration measures ventricular depolarization and conduction. QRS prolongation has been associated with poor heart failure prognosis and cardiovascular mortality, including sudden death. While previous genome-wide association studies (GWAS) have identified 32 QRS SNPs across 26 loci among European, African, and Asian-descent populations, the genetics of QRS among Hispanics/Latinos has not been previously explored.
Methods: We performed a GWAS of QRS duration among Hispanic/Latino ancestry populations (n = 15,124) from four studies using 1000 Genomes imputed genotype data (adjusted for age, sex, global ancestry, clinical and study-specific covariates). Study-specific results were combined using fixed-effects, inverse variance-weighted meta-analysis.
Results: We identified six loci associated with QRS (P<5x10-8), including two novel loci: MYOCD, a nuclear protein expressed in the heart, and SYT1, an integral membrane protein. The top SNP in the MYOCD locus, intronic SNP rs16946539, was found in Hispanics/Latinos with a minor allele frequency (MAF) of 0.04, but is monomorphic in European and African descent populations. The most significant QRS duration association was with intronic SNP rs3922344 (P = 1.19x10-24) in SCN5A/SCN10A. Three other previously identified loci, CDKN1A, VTI1A, and HAND1, also exceeded the GWAS significance threshold among Hispanics/Latinos. A total of 27 of 32 previously identified QRS duration SNPs were shown to generalize in Hispanics/Latinos.
Conclusions: Our QRS duration GWAS, the first in Hispanic/Latino populations, identified two new loci, underscoring the utility of extending large scale genomic studies to currently under-examined populations.