Designing reconfigurable metasurfaces that can dynamically control scattered electromagnetic waves and work in the near-infrared (NIR) and optical regimes remains a challenging task, which is hindered by the static material property and fixed structures. Phase change materials (PCMs) can provide high contrast optical refractive indexes at high frequencies between amorphous and crystal states, therefore are promising as feasible materials for reconfigurable metasurfaces. Here, we propose a hybrid metasurface that can arbitrarily modulate the complex amplitude of incident light with uniform amplitude and full 2π phase coverage by utilizing composite concentric rings (CCRs) with different ratios of gold and PCMs. Our designed metasurface possesses a bi-functionality that is capable of splitting beams or generating vortex beams by thermal switching between metal and semiconductor states of vanadium oxide (VO2), respectively. It can be easily integrated into low loss photonic circuits with an ultra-small footprint. Our metadevice serves as a novel paradigm for active control of beams, which may open new opportunities for signal processing, memory storage, holography, and anti-counterfeiting.