Ion cyclotron emission diagnostic system on the experimental advanced superconducting tokamak and first detection of energetic-particle-driven radiation

Rev Sci Instrum. 2019 Jun;90(6):063504. doi: 10.1063/1.5089537.

Abstract

A passive and noninvasive diagnostic system based on high-frequency B-dot probes (HFBs) has been designed and developed for the measurement and identification of ion cyclotron emission (ICE) in the Experimental Advanced Superconducting Tokamak (EAST). Details of the hardware components of this system including HFBs, direct current blockers, radio frequency splitters, filters, and power detectors as well as data acquisition systems are presented. A spectrum analyzer is used in addition to the ordinary speed acquisition card for data registration and analysis. The reliability of a HFB based diagnostic system has been well validated during the 2018 spring experiments on the EAST. ICE signals corresponding to fundamental cyclotron frequency of hydrogen ions and harmonics of deuterium ions were observed in experiments where deuterium plasmas were heated with deuterium neutral beams. The field dependence of ICE has been verified by recent experiments with three different background magnetic fields. The observed ratio of the ICE frequency is consistent with the ratio of the magnetic field intensity within measurement errors of a few percent.