The chitin biosynthesis pathway is an important physiology process in arthropods. However, few microRNAs (miRNAs) involved in the regulation of the chitin biosynthesis pathway in insects have been reported until now. In this study, four groups of samples that either upregulated or downregulated the chitin biosynthesis pathway were collected for deep sequencing, and a total of 15 unique mature miRNAs with significantly different expression levels were found, including 11 known miRNAs and four novel miRNAs. Subsequently, we showed that miR-2703 and its new target gene chitin synthase 1a are important for ecdysone-induced chitin biosynthesis in Nilaparvata lugens, a serious insect pest of rice. The nymphs showed an obvious moulting defect phenotype, lower survival rate and significantly reduced chitin content after miR-2703 feeding or injection. Furthermore, we found that the transcription level of miR-2703 was not repressed by 20-hydroxyecdysone signalling after Broad-Complex (BR-C) double-stranded RNA (dsRNA) injection compared with the repressed levels after green fluorescent protein dsRNA injection, suggesting that the involvement of miR-2703 in the 20-hydroxyecdysone pathway contributes to BR-C activity. miR-2703 regulates the chitin biosynthesis pathway by targeting chitin synthase 1a in response to 20-hydroxyecdysone signalling.
Keywords: Nilaparvata lugens; chitin biosynthesis pathway; miRNA-2703; pest management; sequencing.
© 2019 The Royal Entomological Society.