Deep evolutionary origin of limb and fin regeneration

Proc Natl Acad Sci U S A. 2019 Jul 23;116(30):15106-15115. doi: 10.1073/pnas.1900475116. Epub 2019 Jul 3.

Abstract

Salamanders and lungfishes are the only sarcopterygians (lobe-finned vertebrates) capable of paired appendage regeneration, regardless of the amputation level. Among actinopterygians (ray-finned fishes), regeneration after amputation at the fin endoskeleton has only been demonstrated in polypterid fishes (Cladistia). Whether this ability evolved independently in sarcopterygians and actinopterygians or has a common origin remains unknown. Here we combine fin regeneration assays and comparative RNA-sequencing (RNA-seq) analysis of Polypterus and axolotl blastemas to provide support for a common origin of paired appendage regeneration in Osteichthyes (bony vertebrates). We show that, in addition to polypterids, regeneration after fin endoskeleton amputation occurs in extant representatives of 2 other nonteleost actinopterygians: the American paddlefish (Chondrostei) and the spotted gar (Holostei). Furthermore, we assessed regeneration in 4 teleost species and show that, with the exception of the blue gourami (Anabantidae), 3 species were capable of regenerating fins after endoskeleton amputation: the white convict and the oscar (Cichlidae), and the goldfish (Cyprinidae). Our comparative RNA-seq analysis of regenerating blastemas of axolotl and Polypterus reveals the activation of common genetic pathways and expression profiles, consistent with a shared genetic program of appendage regeneration. Comparison of RNA-seq data from early Polypterus blastema to single-cell RNA-seq data from axolotl limb bud and limb regeneration stages shows that Polypterus and axolotl share a regeneration-specific genetic program. Collectively, our findings support a deep evolutionary origin of paired appendage regeneration in Osteichthyes and provide an evolutionary framework for studies on the genetic basis of appendage regeneration.

Keywords: evolution; fin; limb; regeneration; tetrapod.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Ambystoma mexicanum / classification
  • Ambystoma mexicanum / genetics*
  • Animal Fins / physiology
  • Animals
  • Biological Evolution*
  • Cichlids / classification
  • Cichlids / genetics*
  • Cyprinidae / classification
  • Cyprinidae / genetics*
  • Extremities / physiology
  • Fish Proteins / classification
  • Fish Proteins / genetics*
  • Fishes / classification
  • Fishes / genetics*
  • Gene Ontology
  • Molecular Sequence Annotation
  • Phylogeny
  • Regeneration / genetics*
  • Transcriptome

Substances

  • Fish Proteins