Inhibitory Effect of Cuphea aequipetala Extracts on Murine B16F10 Melanoma In Vitro and In Vivo

Biomed Res Int. 2019 May 29:2019:8560527. doi: 10.1155/2019/8560527. eCollection 2019.

Abstract

Cuphea aequipetala (C. aequipetala) has been used in Mexican traditional medicine since prehispanic times to treat tumors. In this paper, we evaluated the antiproliferative and apoptotic effect of the methanolic and aqueous extracts of C. aequipetala on several cancer cell lines including the B16F10 cell line of murine melanoma and carried a murine model assay. In vitro assay analyzed the effect in the cellular cycle and several indicators of apoptosis, such as the caspase-3 activity, DNA fragmentation, phosphatidylserine exposure (Annexin-V), and induction of cell membrane permeabilization (propidium iodide) in the B16F10 cells. In vivo, groups of C57BL/6 female mice were subcutaneously injected with 5x105 B16F10 cells and treated with 25 mg/mL of C. aequipetala extracts via oral. Aqueous and methanolic extracts showed a cytotoxic effect in MCF-7, HepG2, and B16F10 cell lines. The methanolic extract showed more antiproliferative effect with less concentration, and for this reason, the in vitro experiments were only continued with it. This extract was able to induce accumulation of cells on G1 phase of the cell cycle; moreover, it was able to induce DNA fragmentation and increase the activity of caspase-3 in B16F10 cells. On the other hand, in the murine model of melanoma, the aqueous extract showed a greater reduction of tumor size in comparison with the methanolic extract, showing an 80% reduction versus one of around 31%, both compared with the untreated control, indicating a better antitumor effect of C. aequipetala aqueous extract via oral administration. In conclusion, the in vitro data showed that both C. aequipetala extracts were able to induce cytotoxicity through the apoptosis pathway in B16F10 cells, and in vivo, the oral administration of aqueous extract reduces the melanoma tumoral mass, suggesting an important antitumoral effect and the perspective to search for effector molecules involved in it.

MeSH terms

  • Animals
  • Antineoplastic Agents / pharmacology
  • Antineoplastic Agents / therapeutic use
  • Apoptosis / drug effects
  • Cell Cycle / drug effects
  • Cell Line, Tumor
  • Cell Proliferation / drug effects
  • Cell Shape / drug effects
  • Cuphea / chemistry*
  • Female
  • Leukocytes, Mononuclear / drug effects
  • Leukocytes, Mononuclear / metabolism
  • Melanoma, Experimental / drug therapy*
  • Melanoma, Experimental / pathology
  • Methanol / chemistry
  • Mice, Inbred C57BL
  • Plant Extracts / pharmacology
  • Plant Extracts / therapeutic use*
  • Water / chemistry

Substances

  • Antineoplastic Agents
  • Plant Extracts
  • Water
  • Methanol