Studies in mice suggest that rapamycin has a negative impact on glucose homeostasis by inducing insulin resistance. However, results have been inconsistent and difficult to assess because the strains, methods of treatment, and analysis vary among studies. Using a consistent protocol, we surveyed nine inbred strains of mice for the effect of rapamycin on various aspects of glucose metabolism. Across all strains, rapamycin significantly delayed glucose clearance after challenge. However, rapamycin showed no main effect on systemic insulin sensitivity. Analysis of individual strains shows that rapamycin induced higher glucose values at 15 minutes post-challenge in 7/9 strains. However, only three strains show rapamycin-induced reduction in glucose clearance from 15 to 120 minutes. Although pancreatic insulin content was reduced by rapamycin in seven strains, none showed reduced serum insulin values. Although one strain showed no effects of rapamycin on glucose metabolism (129), another showed increased systemic insulin sensitivity (B6). We suggest that rapamycin likely inhibits insulin production and secretion in most strains while having strain-specific effects on glucose clearance without altering systemic insulin sensitivity. This strain survey indicates that genetic differences greatly influence the metabolic response to rapamycin.
Keywords: Glucose tolerance; Insulin sensitivity; Pharmacogenetics.
© The Author(s) 2019. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: [email protected].