Objective: We investigated the ability of early alteration of cerebral perfusion-computed tomography (PCT) parameters to predict the risk of vasospasm, delayed cerebral ischemia (DCI), and clinical outcome in patients with aneurysmal subarachnoid hemorrhage (aSAH).
Methods: A retrospective cohort study of 38 aSAH patients investigated with PCT within 48 hours after hemorrhage. Cerebral blood flow (CBF), cerebral blood volume, and mean transit time (MTT) values were recorded. Mean values were compared with clinical data. Vasospasm and DCI were determined by imaging and clinical criteria. Neurologic outcome was assessed by the modified Rankin Scale at discharge and 1-year follow-up visit.
Results: More than a third (39.5%) of patients developed DCI, of whom 86.7% presented moderate-severe vasospasm. There was a significant correlation between perfusion parameters in the early phase and occurrence of DCI and vasospasm. The occurrence of DCI and vasospasm correlated significantly with lower mean early PCT values. DCI was correlated with lower mean early CBF values (P = 0.049) and vasospasm with lower mean CBF (P = 0.01) and MTT (P < 0.00001) values. MTT values of 5.5s were shown to have 94% specificity and 100% sensitivity for predicting the risk of developing vasospasm. The severity of the SAH according to the Barrow Neurological Institute scale correlated significantly with the risk of developing DCI and vasospasm, both significantly associated with unfavorable neurologic outcome (modified Rankin Scale score 3-6) (P = 0.0002 and P = 0.02, respectively).
Conclusions: Early alterations in PCT parameters and high Barrow Neurological Institute grade may identify a subgroup of patients at high risk of developing DCI and vasospasm after aSAH, thus prompting more robust preventative measures and treatment in this subgroup.
Keywords: Aneurysmal subarachnoid hemorrhage; Brain imaging; Cerebral infarction; Cerebrovascular-circulation; Computed tomography; Intracranial aneurysm; Intracranial vasospasm.
Copyright © 2019 Elsevier Inc. All rights reserved.