Lesson from a Fab-enabled co-crystallization study of TDRD2 and PIWIL1

Methods. 2020 Mar 15:175:72-78. doi: 10.1016/j.ymeth.2019.07.002. Epub 2019 Jul 6.

Abstract

The interaction of Tudor domain-containing proteins (TDRDs) with P-element-induced wimpy testis (PIWI) proteins plays critical roles in transposon silencing and spermatogenesis. Most human TDRDs recognize PIWI proteins in a methylarginine-dependent manner via their extended Tudor (eTudor) domains, except TDRD2, which prefers an unmethylated PIWI protein. In order to illustrate the recognition of unmethylated PIWI proteins by TDRD2, we extensively tried co-crystallization of the TDRD2 eTudor with different PIWIL1 peptides, but to no avail. Recombinant antigen-binding fragments (Fabs) have been used to crystallize some difficult proteins in the past, so we generated Fab against the TDRD2 eTudor protein using a phage-display antibody library, and one of these Fab fragments indeed facilitated the co-crystallization of TDRD2 and PIWIL1. Structural analysis of Fab, the TDRD2 eTudor domain in complex with an unmethylated PIWIL1-derived peptide revealed that the PIWIL1 residues G3 through R8 bound between the Tudor core and SN domain of TDRD2. The C-terminal residues of the PIWIL1 peptide were not resolved, presumably due to steric competition with the heavy chain of the Fab. We propose Fab-assisted crystallization as a tool not only for structural studies of single proteins, but also for analysis of interactions between proteins and their ligands in cases where co-crystallization of native protein complexes fails.

Keywords: Co-crystallization; Fab; PIWI; Phage-display; TDRD2; eTudor domain.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Argonaute Proteins / chemistry*
  • Crystallography, X-Ray / methods*
  • Humans
  • Immunoglobulin Fab Fragments / chemistry*
  • Immunoglobulin Fab Fragments / immunology*
  • Ligands
  • Methylation
  • Protein Binding
  • Recombinant Proteins
  • Tudor Domain*

Substances

  • Argonaute Proteins
  • Immunoglobulin Fab Fragments
  • Ligands
  • PIWIL1 protein, human
  • Recombinant Proteins