Two-dimensional (2D) bismuth oxide (Bi2O3) heterostructured nanosheets (BOHNs) were first fabricated by a solution-based molecular self-assembly approach. The synthesized BOHNs nanosheets feature mixed α- and β-phases and rich surface/edge-active sites. When utilized as anode materials for rechargeable batteries, dual-phase BOHNs deliver an initial discharge capacity as high as 647.6 mAh g-1 and an increased capacity of over 200 mAh g-1 remained after 260 cycles for lithium-ion batteries (LIBs), and a stable cycling capacity at ∼50 mAh g-1 after 500 cycles for sodium-ion batteries (SIBs). A novel flexible 2D/1D/2D structure is further developed by implanting 2D BOHNs into conductive 1D carbon nanotubes and 2D graphene to form composite (BOHNCG) paper as free-standing anodes for both LIBs and SIBs. The capacity of 2D/1D/2D BOHNCG as a LIB anode reaches 823.5 mAh g-1, corresponding to an enhancement of ∼27%, and remains at >110 mAh g-1 after 80 cycles as a SIB anode with greatly improved cycling stability. This work verifies the promising potential of 2D BOHNs for practical energy-related devices and enriches the current research on emerging 2D nanomaterials.
Keywords: batteries; bismuth oxide; free-standing; graphene; nanosheets; two-dimensional.