Nonbenzenoid carbocyclic rings are postulated to serve as important structural elements toward tuning the chemical and electronic properties of extended polycyclic aromatic hydrocarbons (PAHs, or namely nanographenes), necessitating a rational and atomically precise synthetic approach toward their fabrication. Here, using a combined bottom-up in-solution and on-surface synthetic approach, we report the synthesis of nonbenzenoid open-shell nanographenes containing two pairs of embedded pentagonal and heptagonal rings. Extensive characterization of the resultant nanographene in solution shows a low optical gap, and an open-shell singlet ground state with a low singlet-triplet gap. Employing ultra-high-resolution scanning tunneling microscopy and spectroscopy, we conduct atomic-scale structural and electronic studies on a cyclopenta-fused derivative on a Au(111) surface. The resultant five to seven rings embedded nanographene displays an extremely narrow energy gap of 0.27 eV and exhibits a pronounced open-shell biradical character close to 1 (y0 = 0.92). Our experimental results are supported by mean-field and multiconfigurational quantum chemical calculations. Access to large nanographenes with a combination of nonbenzenoid topologies and open-shell character should have wide implications in harnessing new functionalities toward the realization of future organic electronic and spintronic devices.