Dynamic changes in cerebral and peripheral markers of glutamatergic signaling across the human sleep-wake cycle

Sleep. 2019 Oct 21;42(11):zsz161. doi: 10.1093/sleep/zsz161.

Abstract

Sleep and brain glutamatergic signaling are homeostatically regulated. Recovery sleep following prolonged wakefulness restores efficient functioning of the brain, possibly by keeping glutamatergic signaling in a homeostatic range. Evidence in humans and mice suggested that metabotropic glutamate receptors of subtype-5 (mGluR5) contribute to the brain's coping mechanisms with sleep deprivation. Here, proton magnetic resonance spectroscopy in 31 healthy men was used to quantify the levels of glutamate (Glu), glutamate-to-glutamine ratio (GLX), and γ-amino-butyric-acid (GABA) in basal ganglia (BG) and dorsolateral prefrontal cortex on 3 consecutive days, after ~8 (baseline), ~32 (sleep deprivation), and ~8 hours (recovery sleep) of wakefulness. Simultaneously, mGluR5 availability was quantified with the novel radioligand for positron emission tomography, [18F]PSS232, and the blood levels of the mGluR5-regulated proteins, fragile X mental retardation protein (FMRP) and brain-derived neurotrophic factor (BDNF) were determined. The data revealed that GLX (p = 0.03) in BG (for Glu: p < 0.06) and the serum concentration of FMRP (p < 0.04) were increased after sleep loss. Other brain metabolites (GABA, N-acetyl-aspartate, choline, glutathione) and serum BDNF levels were not altered by sleep deprivation (pall > 0.6). By contrast, the night without sleep enhanced whole-brain, BG, and parietal cortex mGluR5 availability, which was normalized by recovery sleep (pall < 0.05). The findings provide convergent multimodal evidence that glutamatergic signaling is affected by sleep deprivation and recovery sleep. They support a role for mGluR5 and FMRP in sleep-wake regulation and warrant further studies to investigate their causality and relevance for regulating human sleep in health and disease. Clinical Trial Registration: www.clinicaltrials.gov (study identifier: NCT03813082).

Keywords: BDNF; FMRP; PET-MRS imaging; plasticity; sleep homeostasis.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Basal Ganglia / diagnostic imaging
  • Basal Ganglia / metabolism
  • Brain / diagnostic imaging
  • Brain / metabolism*
  • Brain-Derived Neurotrophic Factor / blood*
  • Fragile X Mental Retardation Protein / blood*
  • Glutamic Acid / metabolism*
  • Glutamine / metabolism*
  • Humans
  • Male
  • Middle Aged
  • Positron-Emission Tomography
  • Prefrontal Cortex / diagnostic imaging
  • Prefrontal Cortex / metabolism
  • Proton Magnetic Resonance Spectroscopy
  • Signal Transduction
  • Sleep / physiology*
  • Sleep Deprivation / diagnostic imaging
  • Sleep Deprivation / metabolism
  • Wakefulness / physiology
  • Young Adult
  • gamma-Aminobutyric Acid / metabolism

Substances

  • Brain-Derived Neurotrophic Factor
  • FMR1 protein, human
  • Glutamine
  • Fragile X Mental Retardation Protein
  • Glutamic Acid
  • gamma-Aminobutyric Acid

Associated data

  • ClinicalTrials.gov/NCT03813082