Interface-Sensitive Raman Microspectroscopy of Water via Confinement with a Multimodal Miniature Surface Forces Apparatus

Langmuir. 2019 Dec 3;35(48):15543-15551. doi: 10.1021/acs.langmuir.9b01889. Epub 2019 Jul 29.

Abstract

Modern interfacial science is increasingly multidisciplinary. Unique insight into interfacial interactions requires new multimodal techniques for interrogating surfaces with simultaneous complementary physical and chemical measurements. Here, we describe the design and testing of a microscope that incorporates a miniature surface forces apparatus (μSFA) in sphere vs flat geometry for force-distance measurements, while simultaneously acquiring Raman spectra of the confined zone. The simple optical setup isolates independent optical paths for (i) the illumination and imaging of Newton's rings and (ii) Raman scattering excitation and efficient signal collection. We benchmark the methodology by examining Teflon thin films in asymmetric (Teflon-water-glass) and symmetric (Teflon-water-Teflon) configurations. Water is observed near the Teflon-glass interface with nanometer-scale sensitivity in both the distance and Raman signals. We perform chemically resolved, label-free imaging of confined contact regions between Teflon and glass surfaces immersed in water. Remarkably, we estimate that the combined approach enables vibrational spectroscopy with single water monolayer sensitivity within minutes. Altogether, the Raman-μSFA allows exploration of molecular confinement between surfaces with chemical selectivity and correlation with interaction forces.