Differential toxicity of ataxin-3 isoforms in Drosophila models of Spinocerebellar Ataxia Type 3

Neurobiol Dis. 2019 Dec:132:104535. doi: 10.1016/j.nbd.2019.104535. Epub 2019 Jul 13.

Abstract

The most commonly inherited dominant ataxia, Spinocerebellar Ataxia Type 3 (SCA3), is caused by a CAG repeat expansion that encodes an abnormally long polyglutamine (polyQ) repeat in the disease protein ataxin-3, a deubiquitinase. Two major full-length isoforms of ataxin-3 exist, both of which contain the same N-terminal portion and polyQ repeat, but differ in their C-termini; one (denoted here as isoform 1) contains a motif that binds ataxin-3's substrate, ubiquitin, whereas the other (denoted here as isoform 2) has a hydrophobic tail. Most SCA3 studies have focused on isoform 1, the predominant version in mammalian brain, yet both isoforms are present in brain and a better understanding of their relative pathogenicity in vivo is needed. We took advantage of the fruit fly, Drosophila melanogaster to model SCA3 and to examine the toxicity of each ataxin-3 isoform. Our assays reveal isoform 1 to be markedly more toxic than isoform 2 in all fly tissues. Reduced toxicity from isoform 2 is due to much lower protein levels as a result of its expedited degradation. Additional studies indicate that isoform 1 is more aggregation-prone than isoform 2 and that the C-terminus of isoform 2 is critical for its enhanced proteasomal degradation. According to our results, although both full-length, pathogenic ataxin-3 isoforms are toxic, isoform 1 is likely the primary contributor to SCA3 due to its presence at higher levels. Isoform 2, as a result of rapid degradation that is dictated by its tail, is unlikely to be a key player in this disease. Our findings provide new insight into the biology of this ataxia and the cellular processing of the underlying disease protein.

Keywords: Ataxia; Drosophila; Isoform; Neurodegeneration; Polyglutamine; Proteasome.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amino Acid Sequence
  • Animals
  • Animals, Genetically Modified
  • Ataxin-3 / genetics*
  • Ataxin-3 / toxicity*
  • Drosophila Proteins / genetics*
  • Drosophila Proteins / toxicity*
  • Drosophila melanogaster
  • HEK293 Cells
  • HeLa Cells
  • Humans
  • Machado-Joseph Disease / genetics*
  • Machado-Joseph Disease / physiopathology
  • Protein Isoforms / genetics
  • Protein Isoforms / toxicity
  • Repressor Proteins / genetics*
  • Repressor Proteins / toxicity*

Substances

  • Drosophila Proteins
  • Protein Isoforms
  • Repressor Proteins
  • ATXN3 protein, human
  • Ataxin-3