Purpose: The purpose of this study was to study changes in choroidal thickness (ChT) and choroidal blood perfusion (ChBP), and the correlation between them, in guinea pig myopia.
Methods: The reliability of optical coherence tomography angiography (OCTA) for measuring ChT and ChBP was verified in guinea pigs, after cervical dislocation (n = 7) or temporal ciliary artery transection (n = 6). Changes in refraction, axial length, ChT, and ChBP were measured during spontaneous myopia (n = 9), monocular form-deprivation myopia (FDM, n = 13), or lens-induced myopia (LIM, n = 14), and after 4 days of recovery from FDM and LIM.
Results: The abolition (by cervical dislocation) or reduction (by temporal ciliary artery transection) of ChBP, and of the associated changes in ChT, were verified by OCTA, thus validating the method of measurement. In the spontaneous myopia group, ChT and ChBP were reduced by 25.2% and 31.9%, respectively. In FDM eyes, mean ± SD ChT and ChBP decreased significantly compared with the untreated fellow eyes (ChT fellow: 76.13 ± 9.34 μm versus 64.76 ± 11.15 μm for FDM; ChBP fellow: 37.87 ± 6.37 × 103 versus 30.27 ± 6.06 × 103 for FDM) and increased after 4 days of recovery (ChT: 77.94 ± 12.57 μm; ChBP: 37.41 ± 6.11 × 103). Effects of LIM were similar to those of FDM. Interocular differences in ChT and ChBP were significantly correlated in each group (FDM: R = 0.71, P < 0.001; LIM: R = 0.53, P < 0.001).
Conclusions: ChT and ChBP were significantly decreased in all three models of guinea pig myopia, and they both increased during recovery. Changes in ChT were positively correlated with changes in ChBP. Therefore, it is possible that the changes of ChT are responsible for the changes of ChBP or vice versa.