Background: The development of venous outflow stenosis in cerebral arteriovenous malformation (AVM) is poorly understood. The location of stenosis within the AVM draining vein in relation to the adjacent venous sinus and the hypothesis that the ratio of draining vein to adjacent sinus diameter might predict the development of venous stenosis were explored.
Methods: Patients with supratentorial AVMs (1997-2018) were reviewed (N = 290). AVM draining vein and adjacent venous sinus diameters, degree of draining vein stenosis, and distance from the maximal stenotic point to the junction of the adjacent draining sinus were recorded. Correlation between percentage of AVM draining vein stenosis and the ratio of AVM draining vein to venous sinus diameters was analyzed.
Results: A total of 360 draining veins in 243 AVMs with complete angiographic data were measured. Venous stenosis (in 131 draining veins) was observed within 20 mm of the junction to the adjacent draining sinus in 85% of our sample. The ratio of draining vein to adjacent sinus diameter correlated positively with the percentage of venous stenosis (P < 0.01, r = 0.21). The ratio between 0.51-1.0 and >1.0 showed significant tighter stenosis compared with the ratio ≤0.5 (25.9% and 28.9% vs. 10.0%, respectively; P < 0.01).
Conclusions: AVM venous outflow stenosis is observed close to the adjacent venous sinus junction. The degree of venous stenosis is greater when the ratio of AVM draining vein/adjacent venous sinus diameter is >0.5. This may be related to more turbulent flow at the junction of the draining vein and venous sinus, especially in larger draining veins, which causes venous stenosis to develop over time.
Keywords: AVM; Draining vein; Flow turbulence; Hemodynamics; Venous sinus; Venous stenosis.
Copyright © 2019 Elsevier Inc. All rights reserved.