Experimental analysis of the lower cervical spine in flexion with a focus on facet tracking

J Biomech. 2019 Aug 27:93:220-225. doi: 10.1016/j.jbiomech.2019.06.022. Epub 2019 Jul 1.

Abstract

Cervical traumas are among the most common events leading to serious spinal cord injuries. While models are often used to better understand injury mechanisms, experimental data for their validation remain sparse, particularly regarding articular facets. The aim of this study was to assess the behavior of cervical FSUs under quasi-static flexion with a specific focus on facet tracking. 9 cadaveric cervical FSUs were imaged and loaded under a 10 Nm flexion moment, exerted incrementally, while biplanar X-rays were acquired at each load increment. The relative vertebral and facet rotations and displacements were assessed using radio-opaque markers implanted in each vertebra and CT-based reconstructions registered on the radiographs. The only failures obtained were due to specimen preparation, indicating a failure moment of cervical FSUs greater than 10 Nm in quasistatic flexion. Facet motions displayed a consistent anterior sliding and a variable pattern regarding their normal displacement. The present study offers insight on the behavior of cervical FSUs under quasi-static flexion beyond physiological thresholds with accurate facet tracking. The data provided should prove useful to further understand injury mechanisms and validate models.

Keywords: Articular facets; Cervical spine; Flexion; Functional spinal units.

MeSH terms

  • Biomechanical Phenomena
  • Cervical Vertebrae / diagnostic imaging*
  • Cervical Vertebrae / physiology*
  • Humans
  • Neck / diagnostic imaging
  • Radiography / standards
  • Range of Motion, Articular / physiology*
  • Spinal Cord Injuries / diagnostic imaging
  • Spinal Cord Injuries / pathology
  • Tomography, X-Ray Computed