Post-transcriptional regulation by microRNAs (miRNAs) is essential for complex molecular responses to physiological insult and disease. Although many disease-associated miRNAs are known, their global targets and culminating network effects on pathophysiology remain poorly understood. We applied Argonaute (AGO) crosslinking immunoprecipitation (CLIP) to systematically elucidate altered miRNA-target interactions in brain following ischemia and reperfusion (I/R) injury. Among 1,190 interactions identified, the most prominent was the cumulative loss of target regulation by miR-29 family members. Integration of translational and time-course RNA profiles revealed a dynamic mode of miR-29 target de-regulation, led by acute translational activation and a later increase in RNA levels, allowing rapid proteomic changes to take effect. These functional regulatory events rely on canonical and non-canonical miR-29 binding and engage glutamate reuptake signals, such as glial glutamate transporter (GLT-1), to control local glutamate levels. These results uncover a miRNA target network that acts acutely to maintain brain homeostasis after ischemic stroke.
Keywords: AGO CLIP; GLT-1; brain homeostasis; glia; glutamate; ischemia and reperfusion injury; miR-29; miRNA targets; post-transcriptional regulation; stroke.
Copyright © 2019 The Authors. Published by Elsevier Inc. All rights reserved.