In Vitro Vascular-Protective Effects of a Tilapia By-Product Oligopeptide on Angiotensin II-Induced Hypertensive Endothelial Injury in HUVEC by Nrf2/NF-κB Pathways

Mar Drugs. 2019 Jul 23;17(7):431. doi: 10.3390/md17070431.

Abstract

Angiotensin II (Ang II) is closely involved in endothelial injury during the development of hypertension. In this study, the protective effects of the tilapia by-product oligopeptide Leu-Ser-Gly-Tyr-Gly-Pro (LSGYGP) on oxidative stress and endothelial injury in Angiotensin II (Ang II)-stimulated human umbilical vein endothelial cells (HUVEC) were evaluated. LSGYGP dose-dependently suppressed the fluorescence intensities of nitric oxide (NO) and reactive oxygen species (ROS), inhibited the nuclear factor-kappa B (NF-κB) pathway, and reduced inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and endothelin-1 (ET-1) expression, as shown by western blot. In addition, it attenuated the expression of gamma-glutamyltransferase (GGT) and heme oxygenase 1 (HO-1), as well as increasing superoxide dismutase (SOD) and glutathione (GSH) expression through the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway. Other experiments revealed that LSGYGP increased the apoptotic inhibition ratio between cleaved-caspase-3/procaspase-3, reduced expressions of pro-apoptotic ratio between Bcl-2/Bax, inhibited phosphorylation of mitogen-activated protein kinases (MAPK), and increased phosphorylation of the serine/threonine kinase (Akt) pathway. Furthermore, LSGYGP significantly decreased Ang II-induced DNA damage in a comet assay, and molecular docking results showed that the steady interaction between LSGYGP with NF-κB may be attributed to hydrogen bonds. These results suggest that this oligopeptide is effective in protecting against Ang II-induced HUVEC injury through the reduction of oxidative stress and alleviating endothelial damage. Thus, it has the potential for the therapeutic treatment of hypertension-associated diseases.

Keywords: HUVEC; NF-κB; Nrf2; angiotensin II; endothelial dysfunction; tilapia.

MeSH terms

  • Angiotensin II / toxicity
  • Animals
  • Endothelium, Vascular / cytology
  • Endothelium, Vascular / drug effects*
  • Endothelium, Vascular / pathology
  • Human Umbilical Vein Endothelial Cells
  • Humans
  • Hypertension / complications*
  • Hypertension / pathology
  • Molecular Docking Simulation
  • NF-E2-Related Factor 2 / metabolism
  • NF-kappa B / chemistry
  • NF-kappa B / metabolism
  • Oligopeptides / chemistry
  • Oligopeptides / pharmacology*
  • Oxidative Stress / drug effects
  • Protein Binding
  • Signal Transduction / drug effects
  • Tilapia*
  • Vascular Diseases / pathology
  • Vascular Diseases / prevention & control*

Substances

  • NF-E2-Related Factor 2
  • NF-kappa B
  • NFE2L2 protein, human
  • Oligopeptides
  • Angiotensin II