Objective: Asthma exacerbations are associated with significant morbidity, mortality, and cost. Accurately identifying asthma patients at risk for exacerbation is essential. We sought to develop a risk prediction tool based on routinely collected data from electronic health records (EHRs).Methods: From a repository of EHRs data, we extracted structured data for gender, race, ethnicity, smoking status, use of asthma medications, environmental allergy testing BMI status, and Asthma Control Test scores (ACT). A subgroup of this population of patients with asthma that had available prescription fill data was identified, which formed the primary population for analysis. Asthma exacerbation was defined as asthma-related hospitalization, urgent/emergent visit or oral steroid use over a 12-month period. Univariable and multivariable statistical analysis was completed to identify factors associated with exacerbation. We developed and tested a risk prediction model based on the multivariable analysis.Results: We identified 37,675 patients with asthma. Of those, 1,787 patients with asthma and fill data were identified, and 979 (54.8%) of them experienced an exacerbation. In the multivariable analysis, smoking (OR = 1.69, CI: 1.08-2.64), allergy testing (OR = 2.40, CI: 1.54-3.73), obesity (OR = 1.66, CI: 1.29-2.12), and ACT score reflecting uncontrolled asthma (OR = 1.66, CI: 1.10-2.29) were associated with increased risk of exacerbation. The area-under-the-curve (AUC) of our model in a combined derivation and validation cohort was 0.67.Conclusion: Despite use of rigorous methodology, we were unable to produce a predictive model with an acceptable degree of accuracy and AUC to be clinically useful.
Keywords: Asthma; asthma exacerbation; electronic health records; prediction models.