The optical properties of Cs4PbBr6-CsPbBr3 perovskite composites

Nanoscale. 2019 Aug 8;11(31):14676-14683. doi: 10.1039/c9nr04787e.

Abstract

Although the optoelectronic applications of metal halide perovskites have been intensively investigated in recent years, the fundamental carrier dynamics of zero-dimensional (0D) Cs4PbBr6 perovskites has been relatively underexplored; in particular, the nature of the green fluorescence is highly debated. Nevertheless, the unique photophysical properties are of immense interest for a variety of potential applications. In this work, the green emission of the CsPbBr3-Cs4PbBr6 perovskite composites is studied using temperature dependent photoluminescence (PL). The PL spectra at different temperatures simultaneously contain two sub-peaks (520 nm and 550 nm), which are ascribed to the emissions of the band-edge and the defect trapped exciton of CsPbBr3. This finding will help to understand the controversial photoluminescence currently observed in different 0D Cs4PbBr6 perovskites.