Nowadays, skin disease is a major problem among peoples worldwide. Different machine learning techniques are applied to predict the various classes of skin disease. In this research paper, we have applied six different machine learning algorithm to categorize different classes of skin disease using three ensemble techniques and then a feature selection method to compare the results obtained from different machine learning techniques. In the proposed study, we present a new method, which applies six different data mining classification techniques and then developed an ensemble approach using bagging, AdaBoost, and gradient boosting classifiers techniques to predict the different classes of skin disease. Further, the feature importance method is used to select important 15 features which play a major role in prediction. A subset of the original dataset is obtained after selecting only 15 features to compare the results of used six machine learning techniques and ensemble approach as on the whole dataset. The ensemble method used on skin disease dataset is compared with the new subset of the original dataset obtained from feature selection method. The outcome shows that the dermatological prediction accuracy of the test dataset is increased compared with an individual classifier and a better accuracy is obtained as compared with subset obtained from feature selection method. The ensemble method and feature selection used on dermatology datasets give better performance as compared with individual classifier algorithms. Ensemble method gives more accurate and effective skin disease prediction.
Keywords: Dermatology; Extra tree classifier; Passive aggressive classifier; Radius neighbors classifier; Skin disease.