The electroretinogram has revealed photoreceptor, bipolar cell, and, in one prior study, retinal ganglion cell (RGC) dysfunction in schizophrenia. The structural abnormalities of the RGC are well documented in schizophrenia and such abnormalities have been associated with visual hallucinations (VH) in neurological disorders. The goals of this study were: 1) to examine the functional responses of photoreceptors and RGC in schizophrenia patients in comparison with healthy controls; and 2) to compare the extent of retinal dysfunction in schizophrenia patients with or without VH. We recorded the flash electroretinogram in scotopic and photopic conditions, and the pattern electroretinogram, in schizophrenia patients (n = 29) and healthy controls (n = 29). Schizophrenia patients were divided in two groups: schizophrenia patients with VH (VH group, n = 12) and schizophrenia patients with auditory hallucinations or no hallucinations (AHNH group, n = 17). Our results replicate previous findings regarding photoreceptor dysfunction in schizophrenia. PERG results showed a significant increase of the P50 implicit time in schizophrenia patients compared with controls (t(55) = 2.1, p < .05, d = 0.55) and a significant increase of the N95 implicit time in schizophrenia patients compared with controls (t(55) = 4.2; p < .001, d = 0.66). We found an increased rod b-wave implicit time (dark-adapted 0.01 ERG) in the VH group compared to the AHNH group and to the control group, which was associated with lifetime VH score. Our results demonstrate a slowing of RGC signaling in schizophrenia patients, which could affect the quality of visual information reaching the visual cortex. The implications of the data for understanding VH in schizophrenia are discussed.
Keywords: Flash electroretinogram; Pattern electroretinogram; Retina; Retinal ganglion cells; Schizophrenia; Visual hallucinations.
Copyright © 2019 Elsevier B.V. All rights reserved.