Site-Selective Functionalization of (sp3 )C-H Bonds Catalyzed by Artificial Metalloenzymes Containing an Iridium-Porphyrin Cofactor

Angew Chem Int Ed Engl. 2019 Sep 23;58(39):13954-13960. doi: 10.1002/anie.201907460. Epub 2019 Aug 21.

Abstract

The selective functionalization of one C-H bond over others in nearly identical steric and electronic environments can facilitate the construction of complex molecules. We report site-selective functionalizations of C-H bonds, differentiated solely by remote substituents, catalyzed by artificial metalloenzymes (ArMs) that are generated from the combination of an evolvable P450 scaffold and an iridium-porphyrin cofactor. The generated systems catalyze the insertion of carbenes into the C-H bonds of a range of phthalan derivatives containing substituents that render the two methylene positions in each phthalan inequivalent. These reactions occur with site-selectivity ratios of up to 17.8:1 and, in most cases, with pairs of enzyme mutants that preferentially form each of the two constitutional isomers. This study demonstrates the potential of abiotic reactions catalyzed by metalloenzymes to functionalize C-H bonds with site selectivity that is difficult to achieve with small-molecule catalysts.

Keywords: C−H functionalization; P450 enzymes; artificial metalloenzymes; biocatalysis; porphyrins.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Review

MeSH terms

  • Catalysis
  • Iridium / chemistry*
  • Metalloproteins / chemistry*
  • Porphyrins / chemistry*
  • Stereoisomerism

Substances

  • Metalloproteins
  • Porphyrins
  • Iridium