Abiotic stress including extreme temperature disturbs the plant cellular homeostasis consequently limiting the yield potential of crop plants. Heat shock proteins (Hsps) are part of major rescue machinery of plants which aid to combat these stressed conditions by re-establishing protein homeostasis. Hsps with their chaperone and co-chaperone mechanisms regulate the activity of their substrate proteins in an ATP-dependent manner. In the present investigation, a genome-wide identification, evolutionary relationship, and comprehensive expression analysis of Hsp70, Hsp90, and Hsp100 gene families have been done in barley. The barley genome possesses 13 members of the Hsp70 gene family, along with 4 members of the Hsp110 subfamily, and 6 members of Hsp90 and 8 members of the Hsp100 gene family. Hsp genes are distributed on all 7 chromosomes of barley, and their encoded protein members are predicted to be localized to cell organelles such as cytosol, mitochondria, chloroplast, and ER. Despite a larger genome size, there are lesser members of these Hsp genes in barley, owing to less duplication events. The variable expression pattern obtained for genes encoding proteins localized to the same subcellular compartment suggests their diverse roles and involvement in different cellular responses. Expression profiling of these genes was performed by qRT-PCR in an array of 32 tissues, which showed a differential and tissue-specific expression of various members of Hsp gene families. We found the upregulation of HvHspc70-4, HvHsp70Mt70-2, HvHspc70-5a, HvHspc70-5b, HvHspc70-N1, HvHspc70-N2, HvHsp110-3, HvHsp90-1, HvHsp100-1, and HvHsp100-2 upon exposure to heat stress during reproductive development. Furthermore, their higher expression during heat stress, heavy metal stress, drought, and salinity stress was also observed in a tissue-specific manner.
Keywords: Abiotic stress; Barley; Heat shock proteins; Reproductive development; qPCR.