Aluminum (Al) is a neurotoxin and is associated with the etiology of neurodegenerative diseases, such as Alzheimer's disease (AD). The Al-free ion (Al3+) is the biologically reactive and toxic form. However, the underlying mechanisms of Al toxicity in the brain remain unclear. Here, we evaluated the effects of Al3+ (in the chloride form-AlCl3) at different concentrations (0.1-100 µM) on the morphology, proliferation, apoptosis, migration and differentiation of neural progenitor cells (NPCs) isolated from embryonic telencephalons, cultured as neurospheres. Our results reveal that Al3+ at 100 µM reduced the number and diameter of neurospheres. Cell cycle analysis showed that Al3+ had a decisive function in proliferation inhibition of NPCs during neural differentiation and induced apoptosis on neurospheres. In addition, 1 µM Al3+ resulted in deleterious effects on neural phenotype determination. Flow cytometry and immunocytochemistry analysis showed that Al3+ promoted a decrease in immature neuronal marker β3-tubulin expression and an increase in co-expression of the NPC marker nestin and glial fibrillary acidic protein. Thus, our findings indicate that Al3+ caused cellular damage and reduced proliferation and migration, resulting in global inhibition of NPC differentiation and neurogenesis.
Keywords: Aluminum; Aluminum-free ion (Al3+); Neural phenotype; Neurodegenerative disorder; Neurogenesis; Neurospheres.