MicroRNA Biogenesis is Enhanced by Liposome-Encapsulated Pin1 Inhibitor in Hepatocellular Carcinoma

Theranostics. 2019 Jul 9;9(16):4704-4716. doi: 10.7150/thno.34588. eCollection 2019.

Abstract

Hepatocellular carcinoma (HCC) is in an urgent need of new, effective therapies to reduce morbidity and mortality. We have previously demonstrated that peptidyl-prolyl cis/trans isomerase Pin1 is a potential target for HCC therapy, due to its pivotal role in HCC development through regulating miRNA biogenesis, and discovered the small molecule API-1 as a novel and specific Pin1 inhibitor. Despite its significant anti-HCC activity, the low water solubility and in vivo bioavailability of API-1 limit its clinical application. To address these issues, we herein developed a liposomal formulation of API-1 to improve API-1 delivery and enhance its anti-HCC efficacy. Methods: We designed and developed a nanoscale liposomal formulation of API-1, named as API-LP. Subsequently, the mean diameter, polydispersity, zeta potential, encapsulation efficiency and thermal properties of the optimization API-LP were characterized. The enhanced anti-HCC activity and the molecular mechanism of API-LP were investigated both in vitro and in vivo. Finally, the safety and pharmacokinetic property of API-LP were evaluated systematically. Results: API-LP had good formulation characteristics and exhibited an enhanced in vitro activity of suppressing proliferation and migration of HCC cells when compared with free API-1. The mechanism study showed that API-LP upregulated miRNA biogenesis via inhibiting Pin1 activity followed by restoring the nucleus-to-cytoplasm export of XPO5. Because of the increased delivery efficiency, API-LP displayed a stronger ability to promote miRNA biogenesis than free API-1. Importantly, API-LP displayed higher systemic exposure than free API-1 in mice without apparent toxicity, resulting in an enhanced tumor inhibition in xenograft mice. Conclusion: The development and assessment of API-LP provide an attractive and safe anti-HCC agent, highlighting the miRNA-based treatment for human cancers.

Keywords: API-1; Pin1; hepatocellular carcinoma; liposome; targeted therapy.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Carcinoma, Hepatocellular / drug therapy*
  • Carcinoma, Hepatocellular / enzymology
  • Carcinoma, Hepatocellular / genetics
  • Cell Line, Tumor
  • Cell Proliferation / drug effects
  • Drug Compounding
  • Enzyme Inhibitors / administration & dosage*
  • Enzyme Inhibitors / chemistry
  • Gene Expression Regulation, Neoplastic
  • Humans
  • Liposomes / chemistry
  • Liver Neoplasms / drug therapy*
  • Liver Neoplasms / enzymology
  • Liver Neoplasms / genetics
  • Mice
  • Mice, Inbred BALB C
  • Mice, Nude
  • MicroRNAs / genetics*
  • MicroRNAs / metabolism
  • NIMA-Interacting Peptidylprolyl Isomerase / antagonists & inhibitors
  • NIMA-Interacting Peptidylprolyl Isomerase / genetics
  • NIMA-Interacting Peptidylprolyl Isomerase / metabolism

Substances

  • Enzyme Inhibitors
  • Liposomes
  • MicroRNAs
  • NIMA-Interacting Peptidylprolyl Isomerase
  • PIN1 protein, human