Purpose: Our purpose was to assess the differences in growth rates of multiple pulmonary metastatic nodules using three-dimensional (3D) computed tomography (CT) volumetry and propose a concept of CT spatial tumor heterogeneity.
Materials and methods: We manually measured the largest diameter of metastatic pulmonary nodules on chest CT scans, and calculated the 3D maximum diameter and the volume using a semi-automated 3D CT volumetry of each nodule. The tumor response was assessed according to the revised RECIST 1.1. We defined a nodule as an outlier based on 1.5 times growth during follow-up. The CT spatial tumor heterogeneity was statistically analyzed by the "minimum combination t-test method" devised in our study.
Results: On manual measurement, the tumor response category was stable disease (SD) in all 10 patients. Of them, total 155 metastatic nodules (4-52 nodules per patient) were segmented using the 3D CT volumetry. In the 3D maximum diameter, 9 patients had SD except for one patient with partial response in the two selected nodules; for the volume, all 10 patients were SD. For the 3D maximum diameter, six patients had at least one outlier; whereas five patients had the outlier on the volume measurement. Six patients were proven to have overall CT spatial tumor heterogeneity.
Conclusions: The spatial tumor heterogeneity determined in a CT parametric approach could be statistically assessed. In patients with CT spatial heterogeneity, tumors with different growth rates may be neglected when the nodules are assessed according to the current guideline.