Long-term instability and possible lead contamination are the two main issues limiting the widespread application of organic-inorganic lead halide perovskites. Here a facile and efficient solution-phase method is demonstrated to synthesize lead-free Cs2 SnX6 (X = Br, I) with a well-defined crystal structure, long-term stability, and high yield. Based on the systematic experimental data and first-principle simulation results, Cs2 SnX6 displays excellent stability against moisture, light, and high temperature, which can be ascribed to the unique vacancy-ordered defect-variant structure, stable chemical compositions with Sn4+ , as well as the lower formation enthalpy for Cs2 SnX6 . Additionally, photodetectors based on Cs2 SnI6 are also fabricated, which show excellent performance and stability. This study provides very useful insights into the development of lead-free double perovskites with high stability.
Keywords: Cs2SnI6; double perovskites; lead-free; photodetectors; solution synthesis; stability.
© 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.