Methylcellulose (MC; 0.5% concentration) is commonly used when evaluating investigational agents for efficacy in preclinical models of disease. When administered by the oral (PO) route, MC is considered a Food and Drug Administration "generally recognized as safe" compound. Yet, there is limited data pertaining to the tolerability and impact on model fidelity of repeated intraperitoneal administration of 0.5% MC. Chronic administration of high-concentration MC (2%-2.5%) has been used to induce anemia, splenomegaly, and lesions in multiple organ systems in several preclinical species. Histopathological findings from a diagnostic pathologic analysis of a single mouse from our laboratory with experimentally induced chronic seizures that had received repeated intraperitoneal administration of antiseizure drugs delivered in MC revealed similar widespread lesions. This study thus tested the hypothesis that chronic administration of intraperitoneal, but not PO, MC incites histologic lesions without effects on preclinical phenotype. Male CF-1 mice (n = 2-14/group) were randomized to receive either 6 weeks of twice weekly 0.5% MC or saline (intraperitoneal or PO) following induction of chronic seizures. Histology of a subset of mice revealed lesions in kidney, liver, mediastinal lymph nodes, mesentery, aorta, and choroid plexus only in intraperitoneal MC-treated mice (n = 7/7). Kindled mice that received MC PO (n = 5) or saline (intraperitoneal n = 6, PO n = 3) had no lesions. There were no effects of intraperitoneal MC treatment on body weight, appearance, seizure stability, or behavior. Nonetheless, our findings suggest that repeated intraperitoneal, but not PO, MC elicits systemic organ damage without impacting the model phenotype, which may confound interpretation of investigational drug-induced histologic lesions. SIGNIFICANCE STATEMENT: Methylcellulose (0.5% concentration) is commonly used when evaluating investigational agents for efficacy in preclinical models of disease. Herein, we demonstrate that repeated administration of 0.5% methylcellulose by the intraperitoneal, but not oral, route results in systemic inflammation and presence of foam-laden macrophages but does not impact the behavioral phenotype of a rodent model of neurological disease.
Copyright © 2019 by The American Society for Pharmacology and Experimental Therapeutics.