Lateral Flow Immunoassay Based on Polydopamine-Coated Gold Nanoparticles for the Sensitive Detection of Zearalenone in Maize

ACS Appl Mater Interfaces. 2019 Aug 28;11(34):31283-31290. doi: 10.1021/acsami.9b08789. Epub 2019 Aug 19.

Abstract

In this work, polydopamine-coated gold nanoparticles (Au@PDAs) were synthesized by the oxidative self-polymerization of dopamine (DA) on the surface of AuNPs and applied for the first time as a signal-amplification label in lateral flow immunoassays (LFIAs) for the sensitive detection of zearalenone (ZEN) in maize. The PDA layer functioned as a linker between AuNPs and anti-ZEN monoclonal antibody (mAb) to form a probe (Au@PDA-mAb). Compared with AuNPs, Au@PDA had excellent color intensity, colloidal stability, and mAb coupling efficiency. The limit of detection of the Au@PDA-based LFIA (Au@PDA-LFIA) was 7.4 pg/mL, which was 10-fold lower than that of the traditional AuNP-based LFIA (AuNP-LFIA) (76.1 pg/mL). The recoveries of Au@PDA-LFIA were 93.80-111.82%, with the coefficient of variation of 1.08-9.04%. In addition, the reliability of Au@PDA-LFIA was further confirmed by the high-performance liquid chromatography method. Overall, our study showed that PDA coating can chemically modify the surface of AuNPs through a simple method and can thus significantly improve the detection sensitivity of LFIA.

Keywords: gold nanoparticles; lateral flow immunoassay; polydopamine; sensitivity; zearalenone.

MeSH terms

  • Gold / chemistry*
  • Immunoassay
  • Indoles / chemistry*
  • Limit of Detection
  • Metal Nanoparticles / chemistry*
  • Polymers / chemistry*
  • Zea mays / chemistry*
  • Zearalenone / analysis*

Substances

  • Indoles
  • Polymers
  • polydopamine
  • Zearalenone
  • Gold