Crystal structure, Hirshfeld surface analysis and inter-action energy and DFT studies of 5,5-diphenyl-1,3-bis-(prop-2-yn-1-yl)imidazolidine-2,4-dione

Acta Crystallogr E Crystallogr Commun. 2019 Jun 4;75(Pt 7):951-956. doi: 10.1107/S2056989019007801. eCollection 2019 Jul 1.

Abstract

The title compound, C21H16N2O2, consists of an imidazolidine unit linked to two phenyl rings and two prop-2-yn-1-yl moieties. The imidazolidine ring is oriented at dihedral angles of 79.10 (5) and 82.61 (5)° with respect to the phenyl rings, while the dihedral angle between the two phenyl rings is 62.06 (5)°. In the crystal, inter-molecular C-HProp⋯OImdzln (Prop = prop-2-yn-1-yl and Imdzln = imidazolidine) hydrogen bonds link the mol-ecules into infinite chains along the b-axis direction. Two weak C-HPhen⋯π inter-actions are also observed. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯H (43.3%), H⋯C/C⋯H (37.8%) and H⋯O/O⋯H (18.0%) inter-actions. Hydrogen bonding and van der Waals inter-actions are the dominant inter-actions in the crystal packing. Computational chemistry indicates that the C-HProp⋯OImdzln hydrogen-bond energy in the crystal is -40.7 kJ mol-1. Density functional theory (DFT) optimized structures at the B3LYP/6-311G(d,p) level are compared with the experimentally determined mol-ecular structure in the solid state. The HOMO-LUMO behaviour was elucidated to determine the energy gap.

Keywords: Hirshfeld surface; crystal structure; imidazolidine; oxazole; π-stacking.

Grants and funding

This work was funded by Hacettepe University Scientific Research Project Unit grant 013 D04 602 004 to T. Hökelek.