Genomic variants in members of the Krüppel-like factor gene family are associated with disease severity and hydroxyurea treatment efficacy in β-hemoglobinopathies patients

Pharmacogenomics. 2019 Jul;20(11):791-801. doi: 10.2217/pgs-2019-0063. Epub 2019 Aug 8.

Abstract

Aim: β-Type hemoglobinopathies are characterized by vast phenotypic diversity as far as disease severity is concerned, while differences have also been observed in hydroxyurea (HU) treatment efficacy. These differences are partly attributed to the residual expression of fetal hemoglobin (HbF) in adulthood. The Krüppel-like family of transcription factors (KLFs) are a set of zinc finger DNA-binding proteins which play a major role in HbF regulation. Here, we explored the possible association of variants in KLF gene family members with response to HU treatment efficacy and disease severity in β-hemoglobinopathies patients. Materials & methods: Six tag single nucleotide polymorphisms, located in four KLF genes, namely KLF3, KLF4, KLF9 and KLF10, were analyzed in 110 β-thalassemia major patients (TDT), 18 nontransfusion dependent β-thalassemia patients (NTDT), 82 sickle cell disease/β-thalassemia compound heterozygous patients and 85 healthy individuals as controls. Results: Our findings show that a KLF4 genomic variant (rs2236599) is associated with HU treatment efficacy in sickle cell disease/β-thalassemia compound heterozygous patients and two KLF10 genomic variants (rs980112, rs3191333) are associated with persistent HbF levels in NTDT patients. Conclusion: Our findings provide evidence that genomic variants located in KLF10 gene may be considered as potential prognostic biomarkers of β-thalassemia clinical severity and an additional variant in KLF4 gene as a pharmacogenomic biomarker, predicting response to HU treatment.

Keywords: Krüppel-like factors; hemoglobinopathies; hydroxyurea; pharmacogenomics; sickle cell disease; β-thalassemia.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Anemia, Sickle Cell / blood
  • Anemia, Sickle Cell / drug therapy*
  • Anemia, Sickle Cell / epidemiology
  • Anemia, Sickle Cell / genetics
  • Biomarkers, Pharmacological / metabolism
  • Early Growth Response Transcription Factors / genetics*
  • Female
  • Fetal Hemoglobin / genetics
  • Genetic Association Studies
  • Hemoglobinopathies / blood
  • Hemoglobinopathies / drug therapy*
  • Hemoglobinopathies / epidemiology
  • Hemoglobinopathies / genetics
  • Humans
  • Hydroxyurea / administration & dosage
  • Hydroxyurea / adverse effects
  • Kruppel-Like Factor 4
  • Kruppel-Like Transcription Factors / genetics*
  • Male
  • Polymorphism, Single Nucleotide / genetics
  • Severity of Illness Index
  • Treatment Outcome
  • beta-Thalassemia / blood
  • beta-Thalassemia / drug therapy*
  • beta-Thalassemia / epidemiology
  • beta-Thalassemia / genetics

Substances

  • Biomarkers, Pharmacological
  • Early Growth Response Transcription Factors
  • KLF10 protein, human
  • KLF3 protein, human
  • KLF4 protein, human
  • KLF9 protein, human
  • Kruppel-Like Factor 4
  • Kruppel-Like Transcription Factors
  • Fetal Hemoglobin
  • Hydroxyurea